Labels

Sunday, March 22, 2015

Climbing Stairs

You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

Naive Way: A DP approach should be able to conquer this problem. The basic logic is

opt[i] // # of distinct ways to reach top
// base case
opt[0] = 1, opt[1] = 1 (edge case should be n=0, return 0)
// iteration
opt[i] = opt[i-1]+opt[i-2]

 public class Solution {  
   public int climbStairs(int n) {  
     // DP  
     // edge case  
     if(n == 0) return 0;  
     int opt[] = new int[n+1];  
     // base case  
     opt[0] = 1;  
     opt[1] = 1;  
     // iteration  
     for(int i = 2;i <= n;i++) opt[i] = opt[i-1]+opt[i-2];  
     return opt[n];  
   }  
 }  

It turns out this follows Fibonacci Sequence. So there is a famous DFS recursive method. Could use path memorizing to reduce time complexity from O(2^n) to O(n).

 public class Solution {  
   public int climbStairs(int n) {  
     // DFS  
     Map<Integer, Integer> map = new HashMap<Integer, Integer>();  
     map.put(0,1);  
     map.put(1,1);  
     return dfs(n, map);  
   }  
   private int dfs(int n, Map<Integer, Integer> map){  
     // fast ending  
     if(map.containsKey(n)) return map.get(n);  
     // recursion  
     int rslt = dfs(n-1, map) + dfs(n-2, map);  
     map.put(n, rslt);  
     return rslt;  
   }  
 }  

No comments:

Post a Comment